Should the public sector build its own AI? - FT中文网
登录×
电子邮件/用户名
密码
记住我
请输入邮箱和密码进行绑定操作:
请输入手机号码,通过短信验证(目前仅支持中国大陆地区的手机号):
请您阅读我们的用户注册协议隐私权保护政策,点击下方按钮即视为您接受。
人工智能

Should the public sector build its own AI?

With a few powerful companies now controlling the tech, some countries are trying to take back control

The writer is former editor-in-chief of Wired magazine and writes Futurepolis, a newsletter on the future of democracy

Point your browser at publicai.co and you will experience a new kind of artificial intelligence, called Apertus. Superficially, it looks and behaves much like any other generative AI chatbot: a simple webpage with a prompt bar, a blank canvas for your curiosity. But it is also a vision of a possible future.

With generative AI largely in the hands of a few powerful companies, some national governments are attempting to create sovereign versions of the technology that they can control. This is taking various forms. Some build data centres or provide AI infrastructure to academic researchers, like the US’s National AI Research Resource or a proposed “Cern for AI” in Europe. Others offer locally tailored AI models: Saudi-backed Humain has launched a chatbot trained to function in Arabic and respect Middle Eastern cultural norms.

Apertus was built by the Swiss government and two public universities. Like Humain’s chatbot, it is tailored to local languages and cultural references; it should be able to distinguish between regional dialects of Swiss-German, for example. But unlike Humain, Apertus (“open” in Latin) is a rare example of fully fledged “public AI”: not only built and controlled by the public sector but open-source and free to use. It was trained on publicly available data, not copyrighted material. Data sources and underlying code are all public, too.

Although it is notionally limited to Swiss users, there is, at least temporarily, an international portal — the publicai.co site — that was built with support from various government and corporate donors. This also lets you try out a public AI model created by the Singaporean government. Set it to Singaporean English and ask for “the best curry noodles in the city”, and it will reply: “Wah lau eh, best curry noodles issit? Depends lah, you prefer the rich, lemak kind or the more dry, spicy version?”

Apertus is not intended to compete with ChatGPT and its ilk, says Joshua Tan, an American computer scientist who led the creation of publicai.co. It is comparatively tiny in terms of raw power: its largest model has 70bn parameters (a measure of an AI model’s complexity) versus GPT-4’s 1.8tn. And it does not yet have reasoning capabilities. But Tan hopes it will serve as a proof of concept that governments can build high-quality public AI with fairly limited resources. Ultimately, he argues, it shows that AI “can be a form of public infrastructure like highways, water, or electricity”. 

This is a big claim. Public infrastructure usually means expensive investments that market forces alone would not deliver. In the case of AI, market forces might appear to be doing just fine. And it is hard to imagine governments summoning up the money and talent needed to compete with the commercial AI industry. Why not regulate it like a utility instead of trying to build alternatives?

The answer is that unlike water, electricity or roads, AI has many potential uses and will therefore be far more difficult to regulate in the same way. It may be possible to prevent certain harmful uses but it would be difficult to force companies to build models that, say, respect certain cultural values.

The commercial priorities of AI companies, which include pursuing artificial general intelligence, may not align with government priorities either. If AI is used to design social policies, improve healthcare, overhaul judicial systems or provide government services online, it has to be fit for purpose and trustworthy.

Can governments afford to build and maintain good enough AI models of their own? That is starting to look more plausible than it might have a year ago. Research is increasingly focused on quality rather than quantity: using the right data to build the right model for the task, rather than massive general-purpose models. Opening Apertus up to the public should help with this, according to Tan, because it lets the model’s builders gather data on how people are using it, a crucial element in making improvements.

Still, good public AI will be expensive. Solutions to this might include public-private partnerships and international consortiums. Governments could also learn to make good-quality training data available to local ecosystems of developers, who can contribute open-source models and code towards national purposes. 

The case is growing for AI models that are designed to serve the public. The more ubiquitous the technology becomes, the more governments are going to need versions of it that can perform the exact functions they require.

版权声明:本文版权归FT中文网所有,未经允许任何单位或个人不得转载,复制或以任何其他方式使用本文全部或部分,侵权必究。

风向逆转:生活成本负担能力问题让特朗普陷入困境

美国总统将生活成本负担能力问题斥为“骗局”,遭遇民众的强烈反弹。

低增长已成为欧洲最大的金融稳定风险

欧洲最大的金融稳定风险已不再是银行,而是低增长本身。只有实现更强劲的增长,欧洲才能保持安全、繁荣与战略自主。

好莱坞导演罗伯•莱纳夫妇遇害,儿子尼克被捕

洛杉矶警方正在调查《摇滚万万岁》导演罗伯•莱纳遇害一案。莱纳生前除影坛成就外,也因长期投身民权事业而备受政界与娱乐圈人士称赞。
12小时前

“稳定币超级周期”为什么可能重塑银行业?

一些技术专家认为,未来五年内,稳定币支付系统的数量将激增至十万种以上。

一周展望:英国央行会在圣诞节前降息吗?

与此同时,投资者一致认为,欧洲央行本周将把基准利率维持在2%。而推迟发布的美国就业数据将揭示美国劳动力市场处于何种状态。

“布鲁塞尔效应”如何适得其反

曾被视为全球典范的欧盟立法机器,如今却在自身抱负的重压下步履蹒跚。
设置字号×
最小
较小
默认
较大
最大
分享×